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Abstract
We recall the importance of recognizing the different mathematical nature of
various concepts relating to PT -symmetric quantum theories. After clarifying
the relation between supersymmetry and pseudo-supersymmetry, we prove
generically that nonlinear pseudo-supersymmetry, recently proposed by Sinha
and Roy, is just a special case of N -fold supersymmetry. In particular, we
show that all the models constructed by these authors have type A two-fold
supersymmetry. Furthermore, we prove that an arbitrary one-body quantum
Hamiltonian which admits two (local) solutions in closed form belongs to
type A two-fold supersymmetry, irrespective of whether or not it is Hermitian,
PT -symmetric, pseudo-Hermitian and so on.

PACS numbers: 03.65.Ge, 02.30.Hq, 11.30.Pb, 11.30.Na

1. Introduction

Since Bender and Boettcher claimed that the reality of the spectrum of the Hamiltonian
H = p2 + x2 + ix3 is due to the underlying PT symmetry [1], there have appeared in the
literature numerous investigations into the spectral properties of various quantum Hamiltonians
with non-real potentials defined on, in general, a complex contour. See, e.g., [2–7] and
references cited therein for recent developments. The rapid progress in this research field,
however, has caused some confusion and several misunderstandings. A typical example is the
relation between PT symmetry and pseudo-Hermiticity. The former concept is meaningful
at the operator level, without referring to a vector space on which the operator in question
acts; indeed, it can be defined as the invariance of the operator under the formal replacements
x → −x and i → −i. On the other hand, the concept of pseudo-Hermiticity, mainly developed
by Mostafazadeh in the context ofPT symmetry [8], inevitably needs a Hilbert space on which
the Hermitian conjugate is defined. Hence, it makes little sense to discuss, e.g., whether or
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not PT symmetry is a special case of pseudo-Hermiticity, without taking into account their
different mathematical character.

Recently, we have also found a similar confusion in the paper by Sinha and Roy [9],
where the authors claimed to generalize the framework of N -fold supersymmetry to include
pseudo-Hermitian systems. This misunderstanding is apparently inherited from the claim in
[8] that pseudo-supersymmetry is a generalization of (ordinary) supersymmetry.

Considering the current situation in and around this research field, we would like to recall in
this paper the importance of recognizing the different mathematical nature of various concepts
relating to PT -symmetric quantum theories. In particular, we focus on the relation among
the nonlinear pseudo-supersymmetric models in [9], the framework of N -fold supersymmetry
and higher order Darboux transformations.

The paper is organized as follows. In the next section, we review the definition of various
concepts characterizing linear differential operators, which are relevant in PT -symmetric
quantum theories, to avoid ambiguity. Based on these precise definitions, we clarify the exact
relation among various types of supersymmetry in section 3. We then proceed to prove that
nonlinear pseudo-supersymmetry automatically implies N -fold supersymmetry in section 4.
To make the relation more transparent, we also show how all the models in [9] can be explicitly
constructed in the framework of N -fold supersymmetry. These findings clearly suggest that
there is an overlooked relation between the higher order Darboux transformations and N -fold
supersymmetry, which we discuss in section 5. The paper concludes in section 6 with a
short discussion of the main results obtained in it and some general remarks on the different
mathematical character of the symmetries considered.

2. Pseudo-Hermiticity and PT symmetry

First of all, we would like to review the definition of PT symmetry [1] and pseudo-Hermiticity
first introduced in [8]. In this paper, we restrict our discussion to linear operators acting on a
linear function space of a single variable, e.g., x, which have generally the following form:

L =
∞∑

n=0

fn(x)
dn

dxn
. (1)

We first define the formal Hermitian conjugate Lf of the operator (1) by

Lf =
∞∑

n=0

(−1)n
dn

dxn
f ∗

n (x∗), (2)

where ∗ denotes complex conjugate. A linear operator L is called formally Hermitian if
Lf = L. Similarly, the transposition Lt of the operator (1) is defined by

Lt =
∞∑

n=0

(−1)n
dn

dxn
fn(x), (3)

and L is said to have transposition symmetry if Lt = L [10]. We note that the formal
Hermitian conjugate and transposition of a product of two linear operators formally satisfy
(L1L2)

f = Lf
2L

f
1 and (L1L2)

t = Lt
2L

t
1, respectively, by the above definition.

The spatial reflection P and the time reversal T of the operator (1) are, respectively,
defined by

PLP =
∞∑

n=0

(−1)nfn(−x)
dn

dxn
, (4)
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T LT =
∞∑

n=0

f ∗
n (x∗)

dn

dxn
, (5)

where we note that P2 = T 2 = 1 and PT = T P . A linear operator L is said to have PT
symmetry if PT LPT = L [1].

Let V be a linear function space, let η be an invertible, formally Hermitian operator on
V , and consider a linear differential operator L : V → V of the form (1). Then, the formal
pseudo-Hermitian conjugate L� : V → V with respect to η is defined by L� = η−1Lfη. A
linear operator (1) is called formally pseudo-Hermitian if there exists an invertible, formally
Hermitian operator η satisfying L� = L, or equivalently, Lf = ηLη−1. It is evident that formal
pseudo-Hermiticity reduces to formal Hermiticity when η = 1.

The Hermitian conjugate of the linear differential operator (1) acting on a Hilbert space
L2(S) (S ⊂ R) with the positive definite inner product (φ,ψ) defined by

(φ,ψ) =
∫

S

dx φ∗(x)ψ(x) (6)

is the operator L† satisfying

(φ, L†ψ) = (Lφ,ψ), ∀φ,ψ ∈ L2(S), (7)

and formally coincides with the formal Hermitian conjugate Lf . Then, the operator L is called
Hermitian (or self-adjoint) if L† = L with respect to the inner product (6).3 It is evident that a
Hermitian operator on L2(S) is always formally Hermitian. Similarly, the operator L is called
pseudo-Hermitian if there exists an invertible, Hermitian operator η satisfying L† = ηLη−1

with respect to the inner product (6) [8]. It is also evident that a pseudo-Hermitian operator
on L2(S) is always formally pseudo-Hermitian.

The crucial problems in the construction of pseudo-Hermitian theories are that the
eigenvectors of a pseudo-Hermitian operator are not in general orthogonal with respect to the
inner product (6), and that ascertaining that these eigenstates span a dense set of the Hilbert
space L2(S) is far from trivial. These facts clearly indicate the difficulty in establishing, e.g.,
a resolution of the identity and a spectral theorem for pseudo-Hermitian operators in terms
of orthogonal spectral projections. Therefore, we should note that many of the results in
[8, 11–17] including the relation with PT symmetry, derived from the assumption that there
exists a complete set of (bi)orthonormal eigenvectors, cannot be rigorously justified in general,
at least at present.

3. Supersymmetry and pseudo-supersymmetry

Before discussing the relation between N -fold and nonlinear pseudo-supersymmetries, we
shall clarify in this section the simplest case, namely, the relation between ordinary and
pseudo-supersymmetries. The Poincaré superalgebra in one spacetime dimension is given by

[A±, H] = 0, {A±, A±} = 0, {A−, A+} = 2H. (8)

An arbitrary system possessing the dynamical symmetry characterized by the above
superalgebra is given by a representation thereof. In particular, a pair of Schrödinger operators
H± can be embedded into the following representation:

A− =
(

0 A−

0 0

)
, A+ =

(
0 0

A+ 0

)
,

H =
(

H + 0
0 H−

)
= 1

2

(
A−A+ 0

0 A+A−

)
,

(9)

3 Note, in particular, that D(L) = D(L†), where D denotes the domain of the operator.
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where the operators A± are given by

A− = d

dx
+ W(x), A+ = (A−)t = − d

dx
+ W(x). (10)

Arbitrary one-body supersymmetric quantum mechanical systems in the literature are in fact
mathematically equivalent to the above system with a specific choice of the function W(x),
although various notation, conventions and terminology have been employed.

The crucial point here is that the superalgebra (8) always holds for an arbitrary
(differentiable) complex function W(x). Then, if we restrict the function W(x) to be real, A+

is the formal Hermitian conjugate of A−, A+ = (A−)f , and the operators H± are formally
Hermitian, (H±)f = H±. If we further restrict the real function W(x) to be in a special class
of real functions, it may be possible to define a Hilbert space L2(S) (S ⊂ R) on which H± are
(rigorously) Hermitian, (H±)f = (H±)† = H±. On the other hand, if we restrict W(x) to a
class of complex functions such that there exists an invertible, formally Hermitian operator η

for which the relation A+ = η−1(A−)fη holds, the operator H is formally pseudo-Hermitian,
Hf = ηHη−1. A further restriction of the complex function W(x) may enable us to define a
Hilbert space L2(S) on which H is (rigorously) pseudo-Hermitian [8]. Finally, if the complex
function W(x) satisfies W ∗(−x∗) = −W(x), the operators H± are PT -symmetric.

It is thus apparent that Hermitian, PT -symmetric or pseudo-Hermitian supersymmetric
systems are special cases of general supersymmetry, which is characterized by the Poincaré
superalgebra (8) in one spacetime dimension, depending on the restrictions one imposes on
the function W(x).

4. N -fold and nonlinear pseudo-supersymmetry

Next, we shall clarify the relation between N -fold and nonlinear pseudo-supersymmetry.
N -fold supersymmetry is characterized by a superalgebra of the type[

Q±
N , HN

] = 0,
{
Q±

N , Q±
N

} = 0,
{
Q−

N , Q+
N

} = �N (HN ), (11)

where �N is a polynomial of degree N . The operators Q±
N are called N -fold supercharges.

For a pair of Schrödinger operators H±
N and a monic linear differential operator PN of

order N :

PN =
N∑

k=0

wk(x)
dk

dxk
, (12)

N -fold supersymmetry can be simply realized by the matrix representation

Q−
N =

(
0 PN
0 0

)
, Q+

N =
(

0 0
P t
N 0

)
, HN =

(
H +

N 0
0 H−

N

)
. (13)

For a discussion of the general aspects of N -fold supersymmetry, see, e.g., [10, 18, 19]. In
particular, the system (13) reduces to the ordinary supersymmetric system (9) when N = 1.

From the discussion in the previous section, it should be almost apparent that Hermitian,
PT -symmetric or pseudo-Hermitian N -fold supersymmetric systems can all be realized as
special cases of (general) N -fold supersymmetry, depending on the properties of the functions
wk(q) (k = 0, . . . ,N ) in the component of N -fold supercharge (12).

We now prove generically that any nonlinear pseudo-supersymmetric system
has N -fold supersymmetry. Indeed, since any nonlinear pseudo-supersymmetric pair of
differential operators h0 and hN (using the notation of [9]) satisfies, by definition, intertwining
relations with respect to higher order linear differential operators A(N) and A(N)�:

A(N)h0 = hNA(N), h0A
(N)� = A(N)�hN, (14)
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the operators h0 and hN preserve the finite-dimensional vector spaces ker A(N) and ker A(N)�,
respectively, and thus are weakly quasi-solvable. Applying the theorem on the equivalence
between weak quasi-solvability and N -fold supersymmetry rigorously proved in [18], and
using the fact that the difference between h0 and hN is uniquely determined by the given A(N),
we immediately conclude that h0 and hN must be an N -fold supersymmetric pair.

To illustrate the above fact more concretely, we shall show in what follows how we can
construct the nonlinear pseudo-supersymmetric models in [9] in the framework of N -fold
supersymmetry with the aid of the algorithm developed by us in [19]. Our starting point is the
two-dimensional linear space

Ṽ2 = 〈1, z〉, (15)

and the most general linear second-order differential operator preserving the latter space:

H̃− = −A(z)
d2

dz2
− B(z)

d

dz
− C(z), (16)

where A(z) is an arbitrary function, and B(z) and C(z) are given by

B(z) = b2z
2 + b1z + b0, (17)

C(z) = −b2z + c0, (18)

bi and c0 being constants. Following the algorithm for constructing an N -fold supersymmetric
system developed in [19], we easily obtain the components of two-fold supersymmetry
(H±, P2) as follows:

H± = −1

2

d2

dx2
+

1

4A(z)

(
A′(z)

2
± B(z)

)(
3A′(z)

2
± B(z)

)
− A′′(z)

4
∓ B ′(z) − R, (19)

P2 = d2

dx2
− 2B(z)

ż

d

dx
− 1

2A(z)

(
A′(z)

2
− B(z)

)(
3A′(z)

2
+ B(z)

)
+

A′′(z)
2

− B ′(z),

(20)

where R = b1/2 + c0, the dot and the prime denote derivative with respect to x and z,
respectively, and the relation between these two variables is determined by

ż2 = 2A(z). (21)

The solvable sector V−
2 of the Hamiltonian H− is given by

V−
2 = e−W(z)〈1, z〉, (22)

with the gauge factor

W(z) =
∫

dz

2A(z)

(
A′(z)

2
− B(z)

)
. (23)

Let us first set the arbitrary function A(z) as

A(z) = 8(2 − a + z)(2 − a +
√

2 − a + z), (24)

where a is a parameter. From equation (21), the change of variable is given by

z(x) = (2 − a)(1 − a) − 2(2 − a)x̄2 + x̄4, (25)
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where x̄ = x − x0, x0 being a constant. Applying the formulae (19) and (20), we obtain the
following two-fold supersymmetric system (H±, P2):

H− = −1

2

d2

dx2
+ b2(· · ·) +

b2
1

32
x̄2 +

(2 + (1 − a)b1)(6 + (1 − a)b1) + 2b0b1

32x̄2

− 48 + 8b1 − b2
1

32(2 − a − x̄2)
+

b0(4 − b1)

16x̄2(2 − a − x̄2)
+

b2
0

32x̄2(2 − a − x̄2)2

+
(2 − a)

(
48 + 16b1 + b2

1

) − 2b0(8 + b1)

32(2 − a − x̄2)2
+

b1

16
(4 − 2b1 + ab1) − R, (26)

H + = −1

2

d2

dx2
+ b2(· · ·) +

b2
1

32
x̄2 +

(2 − (1 − a)b1)(6 − (1 − a)b1) + 2b0b1

32x̄2

− 48 − 8b1 − b2
1

32(2 − a − x̄2)
− b0(4 + b1)

16x̄2(2 − a − x̄2)
+

b2
0

32x̄2(2 − a − x̄2)2

+
(2 − a)

(
48 − 16b1 + b2

1

)
+ 2b0(8 − b1)

32(2 − a − x̄2)2
− b1

16
(4 + 2b1 − ab1) − R, (27)

P2 = d2

dx2
− 1

2

[
b2(· · ·) + b1x̄ − (1 − a)b1

x̄
+

b1x̄

2 − a − x̄2
− b0

x̄(2 − a − x̄2)

]
d

dx

+ b2(· · ·) +
b2

1

16
x̄2 − (2 + (1 − a)b1)(6 − (1 − a)b1) − 2b0b1

16x̄2

+
48 + 4b1 + b2

1

16(2 − a − x̄2)
− b0(2 + b1)

8x̄2(2 − a − x̄2)
+

b2
0

16x̄2(2 − a − x̄2)2

− (2 − a)
(
48 + 8b1 − b2

1

) − 2b0(4 − b1)

16(2 − a − x̄2)2
− b1

8
(2 + 2b1 − ab1), (28)

where each b2(· · ·) indicates a term proportional to b2, all of which are lengthy and thus will be
abbreviated in this paper. We easily see that the Hamiltonians H± are PT -symmetric, namely,
invariant under the formal replacement x → −x, i → −i, provided that the parameters are
chosen such that a, bi, ix0 ∈ R. Furthermore, one can easily show that the above two-fold
supersymmetric system

(
2H−, 2H +, P −

2 = P2, P
+
2 = P t

2

)
exactly reduces to the second

nonlinear pseudo-supersymmetric system (h0, h2, A,A�) in [9], section 4.2, if we take the
parameters as b2 = b0 = 0, b1 = −4 and R = a − 3, with a = qα and x0 = iε.

Next, let us choose the function A(z) as

A(z) = 1

1 − a
(8 − 4a − 4z + z2)

[
4 − 2a − 3z + z2 − (1 − z)

√
8 − 4a − 4z + z2

]
, (29)

where the change of variable in this case is given by

z(x) = (2 − a)(1 − a) − 2(2 − a)x̄2 + x̄4

1 − a − x̄2
. (30)

Following the same procedure as in the previous case, we obtain a two-fold supersymmetric
system which can be PT -symmetric and which exactly reduces to the first nonlinear
pseudo-supersymmetric system in [9], section 4.1, when the parameters take the values
b2 = b0 = 0, b1 = −2 and R = a − 4, with a = qα and x0 = iε.

Similarly, if we take the function A(z) as

A(z) = −32(1 − p − q)2y(1 − y)[3 − 4p − 2(3 − 2p − 2q)y]2, (31)
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where y = 1
2 (1 − i sinh x), the change of variable is given by

z(x) = (3 − 4p)(1 − 4p) − 8(3 − 4p)(1 − p − q)y + 8(3 − 2p − 2q)(1 − p − q)y2.

(32)

The two-fold supersymmetric system in this case can be PT -symmetric with a proper
choice of the parameters and completely coincides with the third nonlinear pseudo-
supersymmetric model in [9], section 5, when b2 = b0 = 0, b1 = 2(1 − p − q) and
R = 1

2 (2 − 2p − 2q + p2 + 2pq + q2).
Therefore, we have shown that all the nonlinear pseudo-supersymmetric models in [9]

can be constructed in the framework of N -fold supersymmetry without any difficulty. More
precisely, note that the two-fold supersymmetric system given by (19) and (20) is a realization
of type A two-fold supersymmetry4. The previous results thus imply that all the nonlinear
pseudo-supersymmetric models constructed in [9] belong to type A two-fold supersymmetry.

5. Second-order Darboux transformation and type A two-fold supersymmetry

We shall now prove the more general fact that an arbitrary one-body quantum Hamiltonian
which admits two (local) eigenfunctions in closed form belongs to type A two-fold
supersymmetry, irrespective of whether or not it is Hermitian, PT -symmetric, pseudo-
Hermitian and so on. Suppose, to this end, that the Hamiltonian H under consideration has
two analytic solutions ψi(x) and ψj(x) with some spectral parameters λi and λj , respectively:

Hψi(x) = λiψi(x), Hψj (x) = λjψj (x). (33)

We define two functions z(x) and W(z) by

z(x) = ψj(x)

ψi(x)
, W(z) = − ln ψi(x). (34)

Then, it is evident that the gauged Hamiltonian H̃− defined by

H̃− = eWH e−W (35)

preserves the vector space

Ṽ2 = 〈1, z〉. (36)

Hence, we have a type A two-fold supersymmetric system (19) and (20) if we follow the
procedure described in the previous section, with the specific choices of z(x),W(z) and H̃−

given by equations (34) and (35). Therefore, all the models constructed from second-order
Darboux transformations with two exact solutions, including those in [23–27], belong to
type A two-fold supersymmetry. We note that we have not assumed whether or not the
original Hamiltonian H is Hermitian, PT -symmetric, pseudo-Hermitian and so on. In fact,
with this procedure we can obtain all the nonlinear pseudo-supersymmetric models in [9].
Another point worth mentioning is that the gauged Hamiltonian (35) must be diagonal in the
basis (36) because of the assumption (33) and the choice (34). It follows that the function B(z)

calculated from A(z) = ż2/2 and W(z) via the relation (23) must be proportional to z, which
results in b2 = b0 = 0 in equation (17). This is the underlying reason why the nonlinear
pseudo-supersymmetric models of [9] always emerge when b2 = b0 = 0 in our previous
arguments. This observation also indicates that the framework of Darboux transformations
of order N based on N eigenfunctions is in general more restrictive than the framework of
N -fold supersymmetry, for arbitrary integer N > 2.

4 In this respect, we recall the important fact that type A N -fold supersymmetry with N = 2 is special due to the
lack of the condition d5A(z)/dz5 = 0 [20, 21]. As a consequence, type A two-fold supersymmetric models are more
general than the sl(2) Lie-algebraic quasi-solvable models in [22].
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6. Concluding remarks

One of the most important lessons drawn from the above results is the recognition of the
different characters of symmetries. The realization of N -fold supersymmetry, including
ordinary one, in terms of linear differential operators is essentially local, in the sense that it is
solely characterized by pointwise relations through a superalgebra. That is exactly the reason
why a couple of significant aspects of N -fold supersymmetry has an intimate relation with
other local concepts such as quasi-solvability [18] and transposition symmetry [10]. It was
shown [28] that the relation among these local concepts is also crucial in another realization of
N -fold supersymmetry for von Roos operators [29]. Higher order Darboux transformations
also make sense at the local level. On the other hand, the concepts of Hermiticity, pseudo-
Hermiticity and so on are global, in the sense that they make sense rigorously only when
they are formulated in a Hilbert space which encodes global properties such as the domain of
operators, boundary conditions and so on.

For a given Hilbert space, any (pseudo-)Hermitian operator defined on it inevitably has
a particular form. That is, any (pseudo-)Hermitian linear differential operator defined on
L2(S) (S ⊂ R) must be formally (pseudo-)Hermitian. Hence, we can discuss whether or not
N -fold supersymmetric linear differential operators can be in addition formally Hermitian,
PT -symmetric or formally pseudo-Hermitian at the local level without referring to a Hilbert
space. If it is the case, the system can possess both of these characteristic features. For
instance, a system which is N -fold supersymmetric and formally Hermitian as well is weakly
quasi-solvable and, if there is a self-adjoint extension on a suitable Hilbert space L2(S),
its eigenvalues are all real. What the authors of [9] have achieved is exactly that they
constructed a few two-fold supersymmetric Schrödinger operators which are PT -symmetric
as well. Needless to say, this does not mean that they generalized the framework of N -fold
supersymmetry.

Regarding the relation between PT symmetry and pseudo-Hermiticity, on the other hand,
much more care must be exercised. This is because an eigenvalue problem of a PT -symmetric
operator is often defined on a complex contour rather than on the real line. Due to this fact, a
PT -symmetric linear differential operator which is formally pseudo-Hermitian as well need
not share the properties of pseudo-Hermitian operators (provided that they are rigorously
justified) when the eigenvalue problem is set for it. In this respect, there was an attempt to
map PT -symmetric eigenvalue problems on a complex contour to those on the real line [30].
However, the method in [30] needs the knowledge that the PT symmetry of the system is
unbroken, and thus would hardly apply in the general situation where we cannot know a priori
whether or not PT symmetry is dynamically broken.
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[19] González-López A and Tanaka T 2005 A novel multi-parameter family of quantum systems with partially

broken N -fold supersymmetry J. Phys. A: Math. Gen. 38 5133–57 (Preprint hep-th/0405079)
[20] Aoyama H, Nakayama N, Sato M and Tanaka T 2001 sl(2) construction of type A N -fold supersymmetry

Phys. Lett. B 519 260–8 (Preprint hep-th/0107048)
[21] Tanaka T 2003 Type A N -fold supersymmetry and generalized Bender–Dunne polynomials Nucl. Phys.

B 662 413–46 (Preprint hep-th/0212276)
[22] Turbiner A V 1988 Quasi-exactly-solvable problems and sl(2) algebra Commun. Math. Phys. 118 467–74
[23] Bagrov V G and Samsonov B F 1997 Darboux transformation of the Schrödinger equation Phys. Part. Nucl.

28 374–97
[24] Samsonov B F 1999 New possibilities for supersymmetry breakdown in quantum mechanics and second-order

irreducible Darboux transformations Phys. Lett. A 263 274–80 (Preprint quant-ph/9904009)
[25] Fernández C D J, Negro J and Nieto L M 2000 Second-order supersymmetric periodic potentials Phys. Lett.

A 275 338–49
[26] Fernández C D J, Mielnik B, Rosas-Ortiz O and Samsonov B F 2002 Nonlocal supersymmetric deformations

of periodic potentials J. Phys. A: Math. Gen. 35 4279–91 (Preprint quant-ph/0303051)
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